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Abstract 
 

A primary challenge for a new generation of reservoir 

simulators is the accurate description of multiphase flow in 

highly heterogeneous media and very complex geometries.  

However, many initiatives in this direction have encountered 

difficulties in that current solver technology is still insufficient 

to account for the increasing complexity of coupled linear 

systems arising in fully implicit formulations. In this respect, a 

few works have made particular progress in partially 

exploiting the physics of the problem in the form of two-stage 

preconditioners.  

 

Two-stage preconditioners are based on the idea that coupled 

system solutions are mainly determined by the solution of 

their elliptic components (i.e., pressure).  Thus, the procedure 

consists of extracting and accurately solving pressure 

subsystems. Residuals associated with this solution are 

corrected with an additional preconditioning step that recovers 

part of the global information contained in the original system. 

 

Optimized and highly complex hierarchical methods such as 

algebraic multigrid (AMG) offer an efficient alternative for 

solving linear systems that show a "discretely elliptic" nature. 

When applicable, the major advantage of AMG is its 

numerical scalability; that is, the numerical work required to 

solve a given type of matrix problem grows only linearly with 

the number of variables. Consequently, interest in 

incorporating AMG methods as basic linear solvers in 

industrial oil reservoir simulation codes has been steadily 

increasing for the solution of pressure blocks.  

 

Generally, however, the preconditioner influences the 

properties of the pressure block to some extent by performing 

certain algebraic manipulations. Often, the modified pressure 

blocks are “less favorable” for an efficient treatment by AMG. 

In this work, we discuss strategies for solving the fully 

implicit systems that preserve (or generate) the desired 

ellipticity property required by AMG methods. Additionally, 

we introduce an iterative coupling scheme as an alternative to 

fully implicit formulations that is faster and also amenable for 

AMG implementations. Hence, we demonstrate that our AMG 

implementation can be applied to efficiently deal with the 

mixed elliptic-hyperbolic character of these problems. 

Numerical experiments reveal that the proposed methodology 

is promising for solving large-scale, complex reservoir 

problems.  

 

Introduction 
 

The implementation of robust and efficient solvers for fully 

implicit formulations is one of the main challenges that most 

simulator developers currently face in the oil industry. The 

core of the computation at each time step is governed by the 

successive solution of coupled linear systems (namely, 

Jacobian systems) that represents the behavior of different 

physical entities sharing the same discretization element. 

Generally, these systems are highly nonsymmetric and 

indefinite. Moreover, the condition number and degree of 

coupling of these systems may be subject to dramatic changes 

due to abrupt flow variations induced by the high-

heterogeneity and complex well operations during the 

simulation process. Standard solvers for these systems are still 

in the early stages of development, despite the intense research 

activity during the 70’s and 80’s
 
by several oil companies

1-5
 

and a recent resurgence of interest in  the development of a 

new generation of  reservoir simulators
6-12

.   

 

Specific preconditioners for fully coupled systems are not 

frequently encountered in the literature, due in large part to the 

complexity seen in the contrasting physical behaviors of the 

primary variables involved: pressures (elliptic or parabolic 

component) and saturations or concentrations (hyperbolic or 

convection-dominated component)
13

. Despite the difficulty of 

these linear systems, there are certain desirable properties 

associated with each individual coefficient block. Under mild 

conditions, which are regularly met at a modest time-step size, 

each of these blocks is irreducible and diagonally dominant. In 

most cases, diagonal dominance is complemented by the fact 
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that all off-diagonal entries are negative and the main diagonal 

entries are all positive. This set of conditions leads to the M-

matrix property, which is a desirable property for ensuring 

convergence of most algebraic iterative methods
14

.  

 

One of the main motivations of the present work is to show 

that exploiting (and preserving) these algebraic properties of 

each individual block facilitates the development of robust 

preconditioning techniques. Moreover, corresponding 

preconditioners may be the result of composing different 

preconditioning stages to achieve further effectiveness in the 

solution process. More precisely, if 
1

0
M

−
 is a right 

preconditioner for the matrix A, further preconditioning may 

be performed on the system 
1

0 0
A M A

−
=  by means of, say, a 

preconditioner 
1

1
M

−
. The concatenation of these two 

preconditioners is what is called two-stage preconditioning. A 

generalization of this procedure defines a multi-stage 

preconditioning method
6,15

. 

 

The definition of most two-stage preconditioners in porous 

media flow has been founded on the basic principle that 

“pressure governs the solution process”
14

. Loosely speaking, 

this entails the application of a decoupling operator to 

facilitate the extraction of the pressure block, followed by the 

solution of the pressure system itself as the first 

preconditioning stage. A second stage consists of the 

application of a preconditioner to recover solution components 

related to the original coupling or to the non-pressure blocks.  

In this sense, the two-stage preconditioner has a close 

resemblance to a coarse-grid iteration where the coarse grid 

may be seen as the pressure block and the second stage as a 

smoothing step to correct residuals associated with the 

pressure solution.  

 

The decoupling process, pressure solution (i.e., the first 

preconditioning stage), and the second preconditioning stage 

components must be assembled in such a way that the two-

stage preconditioning is as effective as possible. The 

decoupling should not only aid to weaken the coupling of the 

pressure block with respect to the other blocks; it is also 

desirable that the decoupling process have a preconditioning 

effect on the whole system as well as preserving good 

algebraic properties for the resulting pressure system. This 

will facilitate the pressure block solution. In particular, we are 

aiming at employing optimized and highly complex 

hierarchical methods, such as algebraic multigrid (AMG)
16,17

, 

for that task. 

 

Inspired by concepts from a wide range of block two-stage 

preconditioners such as Jacobi, Gauss-Seidel and discrete 

projection
14

, we propose an iterative coupling scheme as an 

alternative to fully-implicit formulations
18

. We have found that 

AMG is a very attractive option to accelerate iterative 

coupling computations since the pressure block is readily 

available in a decoupled form.  

 

The present work explores the following issues:
 

 

1. Highlight some conditions for which two-stage precondi-

tioners could be effective in porous media applications. 

2. Analyze the potential that two-stage preconditioners 

based on AMG pressure solutions have in comparison 

with generalized AMG methods for dealing “directly” 

with coupled linear systems. 

3. Compare AMG solution strategies for fully implicit 

formulations with those for iterative coupling procedures. 

 

Two-stage Preconditioners 
 

Efforts to develop general and efficient solvers for coupled 

linear systems with a mixed parabolic, elliptic character have 

been quite extensive in fluid dynamics applications
14,19

. 

However, in the setting of porous media flow, the effort has 

been minimal due to the complexity of characterizing general 

flow and well operation situations in a reservoir.  

 

Behie and Vinsome appear to be the first to consider 

combinative preconditioners for generating decoupled 

preconditioners in reservoir engineering applications
1
. A 

minor change to the concept that sought to incorporate partial 

saturation information was later proposed by Behie and 

Forsyth
20

. A decade later, Wallis proposed a two-stage 

preconditioning approach motivated by the idea of using an 

IMPES-like preconditioner suitable for coupled systems 

arising in fully implicit formulations
21

. This work is 

particularly inspired by his previous results for constrained 

pressure residuals (CPR) accelerations
4
. Motivated by the 

construction of robust physics-based preconditioners for fully-

implicit systems, Klie performed a broader analysis and other 

more robust extensions to the two-stage preconditioner 

originally given by Wallis
13

.  Some of these results are treated 

by Dawson et al. in the context of Newton-Krylov methods for 

porous media flow
22

. 

 

The implementation of two-stage preconditioners has been 

increasingly reported in several challenging oil applications
23-

25
. Moreover, this technology is currently being considered in 

initiatives for the development of a new generation of 

reservoir simulators
6,8

.  

 

To further motivate and fix ideas on two-stage 

preconditioners, consider the coupled system arising from a 

fully implicit formulation, 

 

      ,
pp ps p p

sp ss s s

A A x b
Ax b

A A x b

          = = =             
                          (1) 

 

with 
np np

pp
A

×
∈ ℝ  representing the pressure block coefficients, 

ns ns

ss
A

×
∈ ℝ  representing the saturation/concentration (non-

pressure) block coefficients, and the rectangular blocks 
np ns

ps
A

×
∈ ℝ  and 

ns np

sp
A

×
∈ ℝ representing the respective 

coupling coefficients. Unless adaptive techniques are 
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employed, ns k np= ⋅  for 1, 2,k = …  and np  coincides with 

the number of active grid cells of the discretized simulation 

domain. In general, A is highly non-symmetric and indefinite. 

Moreover, positive eigenvalues come from the 
pp

A  block 

contribution, negative ones usually from the 
ss

A  block 

contribution.  

 

The block 
pp

A  has the structure of a purely elliptic problem, 

whereas the block 
ss

A  holds coefficients of a set of coupled 

(convective-diffusive) parabolic problems. From the algebraic 

standpoint, the blocks 
pp

A  (and the main diagonal blocks of 

ss
A− ) usually fulfill the following properties: (1) diagonal 

dominance, (2) positive diagonal and non-positive off-

diagonal entries (Z-matrix property), (3) irreducibility
14

. It 

should be noted that the AMG treatment of negative M-

matrices requires appropriate row scaling to be performed 

before the coarsening process. 

 

Strict diagonal dominance of 
pp

A  is generally achieved by the 

contribution of bottom hole pressures. Also, under small 

changes of formation volume factors and flow rates between 

adjacent blocks, we can expect 
pp

A   to be nearly symmetric. 

As a result, 
pp

A  may be also positive stable (i.e. the real part 

of all eigenvalues is positive), which is a relaxed version of 

symmetric positive definiteness.  

 

It is important to note that many factors may affect this set of 

desirable algebraic properties. For instance, large time steps or 

small pore volumes may negatively affect the diagonal 

dominance of the diagonal blocks of 
ss

A  and, therefore, 

compromise the convergence of the iterative solver. Another 

negative factor may also come from the well production term 

contribution in a compressible system. In such a case, diagonal 

dominance of the pressure and saturation blocks may be lost 

(i.e., rowsums may become negative), and convergence may 

not be guaranteed.  

 

Effective extraction of the pressure block is critical to the 

application of a decoupling procedure that will weaken the 

original coupling and alternatively provide some extra 

preconditioning effect to the overall procedure. More 

precisely, given the system (1), we would like to find 

decoupling operators D1 and D2 and transform  

 

      
1 1

1 2 .
pp ps

sp ss

A A
D AD A

A A

− −
  = =   

ɶ ɶ
ɶ

ɶ ɶ
                                  (2) 

 

Further below we discuss some possible choices for D1 and D2 

to ensure a set of desirable properties for the implementation 

of the two-stage preconditioner. Given Aɶ  and a residual 

vector, ( ), t

p sr r r= , we define the two-stage preconditioner 

as follows: 

 

1. Solve the pressure system:  pp p pA rδ =ɶ ; 

2. Compute the new residual:  ˆ
0

p
r r A

δ = −    
ɶ ; 

3. Precondition and correct:    
1 ˆ

0

p
M r

δ
δ

−
 = +    

. 

 

Here, ( ), t

p sδ δ δ=  denotes the correction obtained after  the 

two stages. Hence, the action of the complete two-stage 

preconditioner, 
2 s

M  say, on r can be expressed as  

 

      ( )
1

1 1

2

0
.

0 0

pp

s

A
M r M I A M rδ

−
− −

   = = − −       

ɶ
ɶ         (3) 

 

Several comments are in order: 

 

1. The computation of the exact inverse of 
pp

Aɶ would be 

unlikely in large-scale settings. An iterative procedure for 

solving pressures will be necessary to obtain an 

approximation of this operator. This fact will give rise to 

a nested iterative procedure for which special care must 

be taken to tune up inner and outer tolerances. 

2. There is no need to have explicit expressions for all terms 

involved in (3). For the sake of efficiency, the action of 

the two-stage preconditioner must be based on a 

concatenation of matrix-vector products and implicit 

backward and forward substitutions when factorized 

forms are available. Likewise, specialized (restriction and 

prolongation) operators can be easily constructed to 

perform the action of the inverse pressure block or other 

solution block onto a vector
13

. 

3. The preconditioner 
1

M
−

 acts as the second stage within 

the two-stage preconditioning process. Note that, if 

M I= , the two-stage preconditioner reduces to the 

application of 

 

      

1

1

0pp

sp pp

A
r

A A I
δ

−

−

  =   

ɶ

ɶ ɶ
. 

 

This means that the preconditioned correction δ  will 

disregard the saturation block solution and only the 

coupling between pressures and saturation would enter 

into the preconditioner process. Hence, a good practice is 

to allow M to incorporate error solution components 

associated with the non-pressure block solution. An ILU 

or block SOR type of iteration may be a reasonable choice 

in moderate flow situations. In this sense, M plays the role 

of a global smoother for a coarse-grid iteration.  
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4. The two-stage preconditioner 
1

2 s
M

−
, given by (3), is the 

inverse of Aɶ  on the subspace spanned by the columns of 

[ ]0
t

I , that is, 

 

      
1

2
0 0

s

I I
M A−

     =         
ɶ . 

 

The aforementioned two-stage preconditioner may be seen as 

a building block for constructing more robust preconditioning 

strategies, namely, multi-stage preconditioners
6,13

. For 

instance, inclusion of saturation/concentrations can be 

integrated in an additive or multiplicative fashion
14

: 

 

      ( )
1

1 1

2 1

0
,

0

pp

s

ss

A
v M r M I A M r

A

−
− −
+ −

   = = − −       

ɶ
ɶ

ɶ
 

 

( )
1 1 1

1 1

2 * 1
.

0

pp pp ps ss

s

ss

A A A A
v M r M I A M r

A

− − −
− −

−

  −  = = − −       

ɶ ɶ ɶ ɶ
ɶ

ɶ
 

 

For reasons of efficiency, the saturation/concentrations and 

coupling blocks may be optionally replaced by an even sparser 

representation, that is, 
1 1

ss ss
B A
− −
≈ ɶɶ  and  

1 1

ps ps
B A
− −
≈ ɶɶ .  

 

Decoupling Operators 
 

Decoupling operators are necessary to weaken the existing 

coupling between pressure and non-pressure blocks. This 

operation can be seen as a preprocessing step before 

proceeding with the rest of the two-stage preconditioning 

procedure. It is important to mention that the area of 

decoupling operators has been addressed by some authors with 

certain spinoffs in the design of two-stage 

preconditioners
13,23,24,26

.  

 

Given system (1) and the operators introduced in (2), we 

identify five desirable properties to be fulfilled by decoupling 

operators:  

 

1. ( ) ( )Cond A Cond A≤ɶ , i.e., the decoupling operator 

reduces the condition number of the full system; 

2. ( ) ( )
pp pp

Cond A Cond A≤ɶ  and ( ) ( )
ss ss

Cond A Cond A≤ɶ , 

i.e., the condition number of each of the main diagonal 

blocks should be improved; 

3. 

1 1

1 1

0 0

0 0

pp pp

ss ss

A A
I A I A

A A

− −

− −

∞ ∞

− ≤ −
              

ɶ
ɶ

ɶ
, 

i.e., the coupling strength of the blocks of Aɶ  is weaker 

than that of the blocks of A; 

4. 
pp

Aɶ  and the main diagonal blocks of 
ss

Aɶ  should be M-

matrices, ensuring that the resulting decoupled blocks are 

amenable to a convergent iterative solution;  

5. The decoupled system Aɶ  should be computationally 

inexpensive to obtain. 

 

These conditions may be satisfied at different degrees and are 

not mutually exclusive. The use of a two-side decoupling 

strategy with D1 and D2 may be convenient to preserve 

symmetry. However, in most cases reported in the literature, 

D2=I and D1 is defined in terms of the main diagonal of the 

blocks involved. For instance, for the case ns np= (i.e., a 

two-phase flow case), we can define D1 as
13,26,29  

 

 

      1

( ) ( )

( ) ( )

pp ps pp ps

sp ss sp ss

D D diag A diag A
D

D D diag A diag A

      = =         
       (4) 

 

Hence, 

 

      

1

1

1 1

0

0

             

pp ps

sp ss

ss pp ps sp ss ps ps ss

pp sp sp pp pp ss sp ps

A A
D A

A A

D A D A D A D A

D A D A D A D A

−
−

−

   ∆  = =    ∆  
 − −     − − 

ɶ ɶ

i
ɶ ɶ

 

 

with 
pp ss ps sp

D D D D∆= − . It can be easily checked that the 

main diagonal entries of 
pp

Aɶ  and 
ss

Aɶ  are all equal to 1. 

Additionally, the main diagonal entries of  
ps

Aɶ  and 
sp

Aɶ  are all 

equal to 0. Therefore, we can expect that the degree of 

coupling of the off-diagonal blocks has been reduced to some 

extent 

 

This decoupling operator was proposed  by Bank et al.
27

 as the 

Alternate-Block Factorization (ABF) procedure and is subject 

to further analysis in other works
28,29

. The ABF operator was 

successfully applied by Klie
13

 for two-phase flow problems 

where Properties 1-5 from above were shown to be strongly 

satisfied under mild conditions (e.g., if blocks 
ps

A  and 
sp

A  

satisfy the M-matrix condition). This approach was also 

pursued in groundwater applications
26

. 

 

Note that the application of this decoupling procedure is 

simple to implement since it involves a rescaling and linear 

combination of the underlying data structure holding the 

coupled matrix. This can be realized by overwriting the 

underlying data structure and providing additional storage for 

a few vectors that hold the original block diagonals of A. 

 

Note also that the meaning of the ABF decoupling gets 

particularly transparent if we consider a point-wise re-ordering 

of variables. Then, 

 

      

(1,1) (1, )

( ,1) ( , )

 
 

=  
 
 

⋯

⋮ ⋱ ⋮

…

n

n n n

A A

A

A A

                                            (5) 



105832  5 

with n=np denoting the total number of mesh points and 
( , )i j

A  

representing the block of couplings between the variables 

sitting at point i and those sitting at point j. Observing that, 

with respect to the point-wise numbering, 

 

      

(1,1)

1

( , )

 
 

=  
 
 

⋱

n n

A

D

A

 , 

 

we immediately see that 
1

1
D A
−

 simply corresponds to a block-

diagonal scaling.  

 

Unfortunately, there are two potential drawbacks to the 

decoupling (4)
24

. In practice, the resulting pressure matrix 
pp

Aɶ  

may be strongly nonsymmetric compared to 
pp

A . This fact 

may introduce particular difficulties in solving the pressure 

system with AMG. Another problem comes from the handling 

of nonlinear residuals within a Newton procedure. The use of 

left decoupling operators as (4) may lead to oversolving the 

Jacobian system since the linear stopping criteria should be 

adequately weighted in terms of D1. 

 

A more conservative decoupling strategy (also known as 

quasi-IMPES) preserves most of the original structure of the 

coupled system
23,24

. More precisely, it defines the decoupling 

operator as: 

 

      

1

1 1

0

0 0 0

ps ps ss

ss ss

I D I I D D
D

D D I

−

−

        = =             
 .
 

 

Thus, 

 

      

1

1

1

1 1

0

 .

pp psps ss

sp ss

pp ps ss sp ps ps ss ss

sp ss

A AI D D
D A

A AI

A D D A A D D A

A A

−
−

− −

  −  =       
 − −  =   

 

 

Clearly, this operation preserves the coefficients of the 

saturation equation.  Additionally, the pressure equation rows 

are not directly scaled but it would comprise contribution from 

the 
sp

A  block which generally has the M-matrix property. Yet, 

the main diagonal of the resulting 
ps

Aɶ  has been zeroed out. 

Also, this form is less costly to perform than the ABF 

decoupling. As a disadvantage, Properties 1-3 stated above are 

weakly fulfilled
13

 and a stronger preconditioning effect may be 

demanded from the two-stage preconditioner, namely, the 
1

M
−

 component of (3). For illustration, note that if 

      
1QI

pp pp ps ss spA A D D A
−= −ɶ   and 

      ( )1ABF

pp ss pp ps spA D A D A−=∆ −ɶ  

 

denote the resulting pressure systems after having applied the 

quasi-IMPES and ABF decoupling operator, respectively, then 

 

      
1ABF QI

pp ss ppA D A−=∆ɶ ɶ . 

 

Therefore, the ABF decoupling performs a more aggressive 

row scaling than the quasi-IMPES decoupling operator, thus 

generating a stronger nonsymmetric pressure system. 

However, in many practical situations
13

 we can find that 

( ) ( )ABF QI

pp pp
Cond A Cond A<ɶ ɶ . 

 

This illustrates the type of tradeoff that must be carefully 

evaluated for solving the resulting pressure system and 

constructing the two-stage preconditioning strategy.  

 

Algebraic Multigrid (AMG) for Scalar and Coupled 
Applications 
 

Scalable linear solvers are required to efficiently perform 

large-scale numerical simulations. Scalability, however, 

requires hierarchical algorithms which ensure a rapid 

reduction of both short and long range error components. A 

breakthrough, and certainly one of the most important 

advances during the last three decades, was due to the 

(geometric) multigrid principle
30

. 

 

Algebraic multigrid (AMG) solvers attempt to combine the 

advantages of geometric multigrid with those of easy-to-use 

plug-in solvers
32

. In contrast to geometric multigrid, which 

operates on a pre-defined hierarchy of grids, AMG directly 

operates on the linear matrix problem which corresponds to a 

given discretization. Since the explicit construction of a 

multilevel hierarchy is part of the AMG algorithm (i.e., is 

invisible to a user), a corresponding solver is easy to integrate 

into existing simulation packages. For these reasons, algebraic 

multigrid solvers have become quite popular as the basic 

solver in various industrial simulation codes. In reservoir 

simulation, this was driven by ever increasing problem sizes, 

complex structures, heterogeneities, multiphase flows and 

wells which made clear the limits of classical one-level 

solvers. 

 

AMG automates the complete process of creating a multilevel 

hierarchy. Based only on the concept of strength of 

connectivity between variables (in the simplest case defined 

by the size and sign of matrix coefficients) and by exploiting 

the so-called Galerkin-principle, classical AMG
31,32,16

 directly 

mimics geometric multigrid. Sets of coarse-level variables are 

recursively defined by requiring the fine-to-coarse 

connectivity to be as strong as possible under the constraint 

that the sets of coarse-level variables themselves are 

maximally independent (w.r.t. their strong couplings). 

Interpolation between levels is recursively defined based on 

the respective matrices with weights being proportional to the 
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matrix entries, 
ij

a
†
. 

 

The original AMG approach is effectively restricted to 

particular classes of problems, an important one being the 

class of linear algebraic systems with (approximately) weakly 

diagonally dominant M-matrices. Problems like this widely 

occur in connection with discretized scalar second-order 

elliptic PDEs. In such cases, AMG is very mature and can 

handle millions of variables much more efficiently than any 

one-level method and is especially suited for unstructured 

grids. 

 

However, most important industrial as well as scientific 

applications are far from being of the appropriate type and 

require generalized AMG approaches. More general matrix 

problems do not only occur in connection with coupled PDE 

systems, also scalar PDE applications lead to strict M-

matrices only in simple situations. Often large positive off-

diagonal entries occur, or particular rows are far from being 

weakly diagonally dominant. More sophisticated AMG 

methods are needed to make the overall approach more 

generally applicable and, through this, make it more 

interesting for industrial applications. 

 

During the last years, systematic extensions of the classical 

AMG approach have been investigated. In particular, starting 

from early studies (mainly for semiconductor process and 

device applications)
33,34

, a general AMG framework has been 

developed which is highly flexible in exploiting additional 

(e.g. user-provided) information in order to adjust its 

algorithmic components to specific requirements of a given 

problem class
17

. Most features of this framework have been 

realized in the software library SAMG
35

. The basic idea relies 

on the introduction of some auxiliary (sparse) control matrix, 

the so-called “primary” matrix, generally denoted by P: Rather 

than defining the connectivity between variables based 

directly on the entries of the given matrix A, it is defined via 

the entries of P. 

 

Clearly, in case of scalar PDEs and dicretization matrices 

which are (approximately) M-matrices, the standard choice 

would be P=A, that is, P represents the connectivity structure 

between variables as provided directly by the user. In more 

general scalar applications, one may, for instance, define P 

based on geometric distances of the variables (if known), or on 

alternate (for instance, less accurate but simpler) 

discretizations. Interpolation between levels may or may not 

be defined based on the matrix entries of P rather than those of 

A. Obviously, there are various possible combinations and 

which one is the best, strongly depends on certain 

characteristics of a given application. 

 

In the following, we consider coupled PDE systems. To be 

more specific, assume that we want to solve for nf physical 

                                                           
†
 The whole process of coarsening is defined recursively. For 

simplicity, here and in the following, we refer only to the very first 

step of coarsening a given problem. Hence, all indices regarding 

coarser levels are omitted. 

functions such as, for instance, the pressure, the saturation of a 

particular species, or a velocity component. (For historical 

reasons, in the context of AMG, we usually call such functions 

“unknowns”.) Often, the solution of such coupled PDE 

systems is done in stages, each of which requires a scalar sub-

problem to be solved and for which scalar AMG approaches 

can immediately be applied. Whether or not such an “indirect” 

solution approach is efficient, depends strongly on the 

situation. However, in many cases it will be more efficient to 

treat the coupled system by some “direct” AMG approach. 

There are various ways to do this, some ideas are outlined in 

the following. 

 

“Unknown-based” AMG. Assuming the variables to be 

ordered unknown-wise, the discretization matrix has the form 

 

      

[1,1] [1, ]

[ ,1] [ , ]

 
 

=  
 
 

⋯

⋮ ⋱ ⋮

…

nf

nf nf nf

A A

A

A A

 , 

 

and a general primary matrix would look like 

 

      

1
 
 

=  
 
 

⋱

nf

P

P

P

 . 

 

Analogously to the scalar case, the connectivity structure 

reflected by the auxiliary matrix 
i

P  is used to coarsen the i-th 

unknown. Moreover, interpolation is kept separate for the 

different unknowns, that is, variables corresponding to the i-th 

unknown, say, are interpolated from variables of the same type 

only. Concrete weights may, for example, be based on the 

entries of 
i

P , 
[ , ]i i

A  or on geometric distances (if available). 

 

Since, independent of the concrete choice of P, different 

unknowns are coarsened and interpolated separately
‡
, this kind 

of approach is called the “unknown-based” approach. Clearly, 

for this approach to make sense, 
i

P  should reflect the physical 

connectivity between variables corresponding to the i-th 

unknown reasonably well. For instance, for all diagonal blocks 

of A which are close to being weakly diagonally dominant M-

matrices, a standard choice would be 
i

P =
[ , ]i i

A . However, 

analogous to the scalar case, various other choices are 

possible.  

 

Unknown-based AMG approaches are both simple and 

powerful for many classes of applications, at least if the cross-

couplings between unknowns do not exceed a certain strength. 

 

                                                           
‡
 We point out that this does not mean that all unknowns are treated 

independently of each other. In fact, on each level of the multigrid 

hierarchy the Galerkin operators preserve cross-couplings between 

different unknowns. 
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“Point-based” AMG. In more complex situations, so-called 

“point-based” AMG approaches may be more promising. For 

some rough description, we assume the set of variables to be 

re-numbered point-wise, resulting in the representation of A as 

shown in (5). We require all unknowns to be defined at the 

same grid (i.e., no staggered grids allowed). However, not all 

unknowns need to be defined at each point, allowing for 

adaptive strategies such as those realized in the AIM 

approach
36

. 

 

In contrast to unknown-based approaches, point-based ones 

are controlled by primary matrices P which are defined on the 

level of “points” rather than variables, and all unknowns are 

coarsened based on that same P. Hence, the connectivity 

structure defined by P should represent the connectivity of all 

unknowns in the given PDE system sufficiently well. 

 

Often, the connectivity inherent to one of the given PDE 

system’s unknowns, k say, can be regarded as being 

representative also for the other unknowns of the full system. 

In such cases, provided that the k-th unknown is defined at 

each point of the mesh, a possible choice is 

 

      P = [ , ]k kA  . 

 

In reservoir modelling, the pressure matrix, App, can often be 

used for that purpose. In other applications, depending on 

certain characteristics of the class of PDEs under 

consideration, potential choices are ( )
ij

P p=  with, e.g., 

 

      
( , )|| ||ij i jp A= −   or  

2
1/ ( , )ijp dist i j= −  

 

for i j≠  and 

 

      
≠

= −∑ii ijj i
p p . 

 

While the first choice leads to what is sometimes called „block 

approach“, the second choice (requiring the coordinates of 

points to be available) is closely related to geometric 

coarsening. Finally, one can imagine that P is defined based 

on some natural physical quantity for which there is no 

obvious equation contained in the given system of PDEs. An 

example of such a situation would be the pressure in the 

context of the Navier-Stokes equations. 

 

Once a primary matrix has been selected, there are again 

various ways to define interpolation. In particular, 

interpolation may be different for each physical unknown 

(e.g., based on the original matrix blocks 
[ , ]k k

A ), it may be the 

same for each unknown (e.g., based on the primary matrix P 

or on coordinates), or it may be defined based on the 

pointwise block couplings. 

 

Primary matrices are either defined internally to SAMG (i.e. is 

constructed automatically) or they are user-provided. The 

latter option makes particular sense in applications where 

SAMG cannot construct a reasonable primary matrix 

automatically, based solely on algebraic information contained 

in the given linear system. However, in many such cases, a 

user may still be able to define a reasonable matrix himself, 

based on the underlying physics. 

 

A general framework. Formally, by combining the above 

ideas related to coarsening and interpolation, one obtains a 

very flexible and general framework to define concrete AMG 

approaches which can be adapted to the specific requirements 

of many PDE systems. It seems clear, however, that none of 

these algorithms will work satisfactorily for all systems of 

PDEs. Instead, different approaches may be required for 

different classes of applications, for instance, from fluid 

dynamics, oil reservoir simulation and semiconductor process 

and device simulation. 

 

Independent of this, a principle advantage of point-based 

approaches (compared to unknown-based ones) is that they are 

much more flexible in taking strong cross-couplings between 

unknowns into account. In particular, smoothing can be 

performed in a point block sense (e.g. block Gauss-Seidel or 

block ILU). Furthermore, if required, interpolation can also be 

performed block-wise as naturally induced by the system’s 

point block coupling. 

 

Although AMG has become fairly mature for many different 

classes of problems, we point out that there are still various 

open questions. The general approach is still continuously 

being enhanced and extended to cover more and more 

applications. 

 

Iterative Coupling 
 

Many new techniques have been developed to cover the 

efficiency gap between fully implicit methods and IMPES 

formulations. Iterative coupling is one of these methods. The 

main objective of the iterative coupling method is to achieve 

both accuracy and efficiency at the same time.  

 

By means of the iterative coupling we avoid solving pressure 

and saturation simultaneously as in fully implicit formulations. 

On the other hand, iterative coupling differs from sequential 

methods in that saturations are not solved implicitly.   

 

Iterative coupling is an operator-splitting technique that 

decouples the multiphase system into pressure and saturation 

equations. At each time step a series of iterations are 

computed that involve solving both pressure and a linearized 

saturation equation using specific tolerances that are iteration-

dependent and sequential. Following convergence of an 

iteration, phase concentrations and mass balances are checked 

to determine if a time-step convergence is satisfied.  If not, 

nonlinear coefficients are updated and iteration tolerances are 

tightened. The sequential iteration is then repeated. This 

concept is illustrated in Figure 1. 
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Fig. 1: The iterative coupling approach for 
solving pressures and saturations 

 

 

Figure 2 shows how the iterative coupling reproduces very 

well the production response for the SPE 10
th
 Comparative 

Project
37

 using the fully implicit formulations of IPARS
38

 and 

Eclipse.  
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Fig. 2: Production response using fully implicit and iterative 
coupling implementation in IPARS against Eclipse 

for the SPE 10
th

 Comparative project 

 

 

Numerical Experiments 
 

In the following we consider five test cases based on different 

sections and upscaled versions of the SPE 10
th

 Comparative 

Project
37

: 

1. 60x220 (1
st
 slice of the non-fluvial reservoir, Tarbert 

formation); 

2. 60x220 (1
st
 slice of the fluvial reservoir, Upper Ness 

formation); 

3. 17x12x44 (upscaled version of the original data, including 

Tarbert and Upper Ness formations); 

4. 25x15x55 (Upper Ness formation, upscaled version); 

5. 50x30x110 (Upper Ness formation, upscaled version). 

 

For all cases we define one water injection well at the center 

of the reservoir, and four production wells at the four corners 

of the reservoir. All are bottomhole pressure specified. For 

each of the considered problem sizes, we performed tests for 

an oil-water and a black-oil system. For the black-oil system, 

the PVT and saturation-dependent curves data were adapted 

from the SPE 9
th

 Comparative Project.  

 

We compare four different solver approaches:  

 

1. AMG-FIMS: Direct use of AMG as a solver for the 

coupled system (1). More precisely, a point-based 

approach  is used, with the primary matrix given by the 

pressure block, ppA . Correspondingly, the matrix is 

reordered in a point-block fashion (5). 

2. AMG-FIM2SP: AMG is used as a solver just for the 

pressure system 
pp

Aɶ  resulting from the decoupling and 

restriction process of the two-stage preconditioner given 

by (3). In the tests here, we apply the quasi-IMPES 

decoupling (to favour AMG convergence) and define 
1

M
−

 by one LSOR iteration
23

. 

3. AMG-ICS: AMG is used for solving the pressure system 

resulting from the iterative coupling. Saturations are 

solved by GMRES preconditioned with line SOR.  

4. AMG-ICP: AMG is used as a preconditioner for the 

pressure system resulting from the iterative coupling, 

accelerated by a conjugate gradient method. Saturations 

are solved by GMRES preconditioned with line SOR. 

 

While for oil-water simulations all four solver approaches 

have been implemented and compared with each other, for 

black-oil simulations we have currently implemented only the 

first two approaches. 

 

The AMG employed here is the SAMG software developed at 

the Fraunhofer Institute for Algorithms and Scientific 

Computing
35

. SAMG was added to the suite of different 

solvers already provided by IPARS
38

. We consider the 

following default settings for SAMG
35

 in all cases that were 

analyzed: 

 

• Pre- and post-smoothing steps at each level consisting of 

one Gauss-Seidel iteration; 

• V-cycle coarsening/refinement pattern consisting of a 

maximum of 25 levels; 

• Sparse Gaussian elimination at the very coarsest level.  

 

Timestep 
loop 

Solve pressure equation with initial  
guess from most recent iterate, Pk-1

,S
k-1 

Converge/ 
Max its? 

Yes 
No 

Start iteration k 

n=n+1 

P
k
 

Solve saturation equation with initial 
guess from most recent iterate, Pk

,S
k-1 

k=k+1 S
k
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Fig. 3: Timings for oil-water simulations using 
AMG-based solver approaches 

 

 

Figure 3 summarizes timings for oil-water simulations in the 

Cases 1-5. Simulations were carried out for 2000 days except 

for Case 5 which was simulated for 500 days. We first observe 

that, for all test cases and solver approaches considered here, 

AMG is very efficient as a basic linear solver. For multiphase 

fully implicit formulations, the two-stage preconditioning 

seems to offer a slightly more efficient possibility as compared 

with directly tackling the solution of the coupled linear system 

with AMG. The results of the iterative coupling approach 

demonstrate that this approach is even more promising than 

the other ones. This is, in particular, true for the AMG-ICP 

variant. The results in Figure 4 clearly show the substantial 

gain in performance in switching from multilevel ILU
23,39

 to 

AMG. 
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Fig. 4: Timings for the two-stage preconditioning approach 
comparing AMG with multilevel ILU for solving the pressure 

Figure 5 shows timings for the black-oil case. There appears to 

be no striking difference between applying AMG directly to 

the coupled system and applying it to the pressure solution in 

the two-stage process, with a slight preference for the latter. 
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Fig. 5: Timings for black-oil simulations 

 

 

Conclusions and Outlook 
 

The numerical experiments compare the performance of four 

strategies all of which use AMG as a basic solver component. 

The results are very promising and seem to indicate that the 

“direct” application of AMG (point-based approach AMG-

FIMS) is the least efficient. 

 

However, more testing is certainly needed to draw some well-

founded and final conclusion. In particular, the influence of 

wells, time step size, DPDP or otherwise physically more 

involved situations need carefully to be investigated. In fact, 

some recent studies with AMG have demonstrated the 

particular potential and effectiveness of direct AMG 

approaches in dealing with more complex, real-life reservoir 

simulations
36

. In these cases, more powerful and robust AMG 

approaches have turned out to be beneficial. 

 

To be more specific, we want to recall that the effectivity of 

two-stage preconditioners is strongly tied to the decoupling, 

the pressure solution (i.e., the properties of the matrix block 

pp
Aɶ ) and the preconditioner 

1
M

−
. Clearly, as long as 

pp
Aɶ  is 

“sufficiently elliptic” (so that standard scalar AMG for 

computing the pressure works effectively), and a simple and 

cheap one-level preconditioner is sufficient to ensure rapid 

convergence of the overall two-stage process, AMG-FIMS can 

hardly be more efficient than the two-stage process (AMG-

FIM2SP). In fact, this is observed in all cases tested her: 

already in its simplest form (with just plain Gauss-Seidel 

smoothing) scalar AMG works efficiently as a pressure solver, 

and the overall pre-conditioner corresponds to just a single 

step of LSOR. Hence, it is not really surprising that AMG-
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FIMS is slightly more expensive than AMG-FIM2SP. 

 

However, this cannot always be expected to be true. In 

general, stronger and more costly preconditioners 
1

M
−

 as well 

as more robust smoothers will be required. Most importantly, 

however, 
pp

Aɶ  may have properties which are “less favorable” 

for an efficient treatment by AMG. In fact, even if the original 

pressure matrix ppA  is perfectly elliptic, algebraic 

manipulations such as those done in the decoupling process, 

may negatively influence the ellipticity to an extent which 

may cause AMG to perform less efficiently. Depending on the 

situation (in particular, the well production term contribution), 

row sums may get increasingly negative and, eventually, 
pp

Aɶ  

may become indefinite (with one or more negative 

eigenvalues). Analysis of the interplay between all relevant 

components deserves further efforts over a wide range of 

multiphase flow reservoir situations. The risk of a substantial 

performance drop can certainly be reduced by a careful choice 

of the decoupling. However, a rigorous analysis, taking all 

aspects into account, seems fairly difficult. It is known that 

even simple re-scalings (multiplying by a diagonal matrix 

from the left) may substantially influence AMG’s 

performance. Re-scalings from the right are even much more 

dangerous since they may completely change the elliptic 

character of a matrix. 

 

The fact that direct AMG approaches do not perform any 

algebraic manipulations on a given system makes them 

particularly interesting and promising compared to two-stage 

approaches. In fact, direct AMG is always applied to the 

unmodified system, with the coarsening process being driven 

by the fully elliptic pressure block 
pp

A . Moreover, for various 

reasons, convergence of the direct AMG approach is expected 

to be less dependent on strong cross-couplings between 

pressure and saturation. This is due to its hierarchical nature 

combined with its potential in employing strong block-wise 

smoothing and interpolation.  

 

The authors are interested in pursuing the following research 

paths: 

 

1. Define adaptive and physically-based strategies for the 

use of two-stage preconditioners. This goal is motivated 

by the fact that the strength of each of the preconditioning 

components described herein can be controlled in 

accordance with the timestep. 

2. Perform a more detailed analysis of decoupling strategies 

that may be more amenable for the efficiency of AMG 

pressure solutions. 

3. Perform a more detailed analysis of direct AMG 

approaches for more complex physical situations, larger 

time steps, etc. The recent results of Clees and Ganzer
36

 

will serve as a starting point. 

4. Perform analysis on parallel and multicore architectures 

for exploiting different degree of granularity for two-stage 

preconditioners and iterative coupling. 

5. Analysis of iterative coupling in the setting of multiblock 

implementations that may involve the simulation of 

different scales, physics and numerical formulations in 

different regions of the reservoir domain.  

 

Acknowledgements 
 

The authors would like to thank Tareq Al-Shaalan from 

Aramco for sharing valuable discussions on two-stage 

preconditioning methods.  

 

References 
 
1. Behie G. and Vinsome, P.: “Block Iterative Methods for Fully 

Implicit Reservoir Simulation”, SPEJ, pp 658-668, 1982. 

2. Behie, A. and Forsyth, P.A.: “Multigrid Solution of the Pressure 

Equation in Reservor Simulation”, SPE AIME SPE 10492, pp. 

623-636, 1983. 

3. Dendy Jr., J.E., McCormick, S.F., Ruge, J.W., Russell, T.F. and 

Schaffer, S.: “Multigrid Methods for Three-Dimensional 

Petroleum Reservoir Simulation”, SPE Symposium on 

Reservoir Simulation, SPE 18409, Houston, TX, Feb. 6-8, 1989. 

4. Wallis, J.R., Kendall, R.P. and Little, L.E.: “Constrained 

Residual Acceleration of Conjugate Residual Methods”, SPE 

Reservoir Simulation Symposium, SPE 13536, Dallas, Texas, 

Feb  10-13, 1985. 

5. Mattax, C. and Dalton, R.: “Reservoir Simulation”, SPE 

Monograph Series, 1990.  

6. Cao, H., Tchelepi, H.A. and Wallis, J.: “Parallel Scalable 

Unstructured CPR-type Linear Solver for Reservoir 

Simulation”, SPE Annual Technical Conference and Exhibition, 

SPE 96809, Dallas, Texas, Oct. 9-12, 2005. 

7. Dogru, A.H., Sunaidi, H.A., Fung, L.S., Habiballah, W.A., Al-

Zamel, N. and Li, K.G.: “A Parallel Simulator for Large-Scale 

Reservoir Simulation”, SPE Reservoir Evaluation and 

Engineering, SPE N. 75805-PA,Vol.5, N. 1, pp. 11-23. 2002. 

8. DeBaun, D. et al.: “An Extensible Architecture for Next 

Generation Scalable Parallel Reservoir Simulation”, SPE 

Reservoir Simulation Symposium, SPE 93274, The Woodlands, 

Texas, Jan 31-Feb 2, 2005. 

9. Watts J.W. and Shaw, J.S.: “New Method for Solving Implicit 

Reservoir Simulation Matrix Equation”, SPE Reservoir 

Simulation Symposium, SPE 93068-MS, The Woodlands, 

Texas, Jan 31-Feb 2, 2005. 

10. Fung, L.K, Su, H., Tan, C.T., Hemanthkumar, K. and Pita, J.: 

“Fully-Implicit Fully-coupled Well Model for Parallel Mega-

Cell Reservoir Simulation”, SPE Technical Symposium of Saudi 

Arabia Section, SPE 106331, Dhahran, Saudi Arabia, May 14-

16, 2005. 

11. Fjerstad, P.A., Sikandar, A.S., Cao, H. and Liu, J.: “Next 

Generation Parallel Computing for Large-Scale Reservoir 

Simulation”, SPE International Improved Oil Recovery 

Conference in Asia Pacific, SPE 97358, Kuala Lampur, 

Malaysia, Dec. 2005.  

12. Becker, B.L., Usadi, A.K., Ray, M.B. and Diyankov, O.V.: 

“Next Generation Reservoir Simulation Using Russian Linear 

Solvers”, SPE Russian Oil and Gas Technical Conference and 

Exhibition, SPE 103578-MS, Moscow, Russia, Oct 3-6, 2006.  

13. Klie, H.: “Krylov-Secant Methods for Solving Large Scale 

Systems of Coupled Nonlinear Parabolic Equations”, PhD 

thesis, Dept. of Computational and Applied Mathematics, Rice 

University, Houston, TX, 1996. 

14. Axelsson, O.: “Iterative Solution Methods”, Cambridge 

University Press, 1994. 



105832  11 

15. Chen, K.: “Matrix Preconditioning Techniques and 

Applications”, Cambridge University Press, 2005.  

16. Stüben, K.: “An Introduction to Algebraic Multigrid”, Appendix 

in the book „Multigrid“ by Trottenberg, U., Oosterlee, C.W., 

Schüller, A., Academic Press, 2001, pp. 413-532. 

17. Clees, T.: “AMG Strategies for PDE Systems with Applications 

in Industrial Semiconductor Simulation”, Ph.D. Thesis, 

University of Cologne, Nov 2004; Shaker, Aachen, Germany, 

2005. 

18. Lu, B.: Iterative Coupling Techniques for Reservoir Simulation 

with Multiphase Flow. Ph.D. Thesis, Center for Subsurface 

Modeling, ICES, The University of Texas at Austin, 2006 (in 

progress).  

19. Elman H., Silvester, D. and Wathen, A.: “Finite Elements and 

Fast Iterative Solvers with Applications in Incompressible Fluid 

Dynamics”, Oxford Science Publications, 2005.  

20. Behie, G. and Forsyth, P.: “Incomplete Factorization Methods 

for Fully-Implicit Simulation of Enhanced Oil Recovery”, SIAM 

J. Sci. Statist. Comput., Vol. 5, pp. 543-561, 1984. 

21. Wallis, J.: “Two-step Preconditioning”, Private Communication, 

1993.  

22. Dawson, C., Klíe, H., Wheeler, M.F. and Woodward, C.: “A 

Parallel, Implicit, Cell-Centered Method for Two-Phase Flow 

with a Preconditioned Newton-Krylov Solver”, Comp. 

Geosciences 1, pp. 215–249, 1997. 

23. Lacroix, S., Vassileski, Yu., Wheeler, J. and Wheeler, M.F.: 

“Iterative Solution Methods for Modeling Multiphase Flow in 

Porous Media Fully-Implicitly”, SIAM J. Sci. Comput. 25, 

pp.905-926, 2003. 

24. Scheichl, R., Masson, R. and Wendebourg, J.: “Decoupling and 

Block Preconditioning for Sedimentary Basin Simulations”, 

Comp. Geosciences 7, pp.295-318, 2003. 

25. Monteagudo, J.E.P. and Firoozabadi, A.: “Numerical Simulation 

of Water Injection in Disconnected and Connected Fracture 

Media Using Jacobian-Free Fully Implicit Control Volume 

Method”, SPE/DOE Fourteenth Symposium on Improved Oil 

Recovery, SPE 89449, Tulsa, Oklahoma, April 17-21, 2004. 

26. Bastian, P. and Helmig, R.: “Efficient Fully-coupled solution 

Techniques For Two-Phase Flow in Porous Media: Parallel 

Multigrid Solution and Large Computations”, Advances in 

Water Res. 23, pp. 199-216, 1999.  

27. Bank, R., Chan, T., Coughan, W. and Smith, K.: “The Alternate-

Block-Factorization Procedure for Systems of Partial 

Differential Equations”, BIT 29, pp. 938-954, 1989. 

28. Wang, Z.Y., Wu, K.C. and Dutton, R.W.: “An Approach to 

Construct Preconditioning Matrices for Block Iteration of 

Linear Equations”, IEEE Trans. on Computer Aided Design 11, 

pp. 1334-1343, 1992.  

29. Fan, Q., Forsyth, P.A., McMacken, J.R.F. and Tang, W.P.; 

“Performance Issues for Iterative Solvers in Device 

Simulation”, SIAM J. Sci. Comp. 17, pp. 100-117, 1996.  

30. Trottenberg, U., Oosterlee, C.W., Schüller, A.: „Multigrid“, 

Academic Press, 2001. 

31. Ruge, J.W. and Stüben. K.: “Algebraic Multigrid (AMG)” in 

“Multigrid Methods” (McCormick, S.F., ed.), SIAM, Frontiers 

in Applied Mathematics, Vol. 5, Philadelphia, 1986. 

32. Stüben, K.: “Review of Algebraic Multigrid”, J. of Comp. and 

Appl. Math. 128, pp. 281-309, 2001. 

33. Füllenbach, T. and Stüben, K.: “Algebraic multigrid for selected 

PDE systems”, Proceedings of the Fourth European Conference 

on Elliptic and Parabolic Problems, Rolduc (The Netherlands) 

and Gaeta (Italy), 2001. World Scientific, New Jersey, London, 

pp. 399-410, 2002. 

34. Clees, T. and Stüben, K.: “Algebraic multigrid for industrial 

semiconductor device simulation”, Proceedings of the First 

International Conference on Challenges in Scientific 

Computing, Berlin, Germany, Oct 2-5, 2002. Lecture Notes in 

Computational Science and Engineering, Springer, Heidelberg, 

Berlin, 2003. 

35. Stüben, K. and Clees, T.. “SAMG User’s Manual”, Release 22c, 

Fraunhofer Institute SCAI, June 2005. Can be downloaded from 

http://www.scai.fhg.de/samg. 

36. Clees, T. and Ganzer, L.: “An Efficient Algebraic Multi-Grid 

Solver Strategy for Adaptive Implicit Methods in Oil Reservoir 

Simulation” paper SPE 105789 presented at the 2007 SPE 

Reservoir Simulation Symposium, Houston, TX, Feb. 26-28. 

37. Christie M.A. and Blunt, M.J.: “Tenth SPE Comparative 

Solution Project: A Comparison of Upscaling Techniques”, SPE 

Reservoir Simulation Symposium, SPE 72469, Houston, Feb 

11-14, 2001. 

38. Wheeler, J.: “IPARS User’s Manual”, Tech Report CSM, ICES, 

The University of Texas at Austin, Austin, TX, 2000. 

39. Bank, R. and Wagner, Ch.: “Multilevel ILU decomposition” 

Numer. Math. 82, No.4, pp. 543-576, 1999. 

 


